High resolution pulse-by-pulse laser ablation U-Pb age dating of complex zircons and simultaneous Hf isotope analyses from petrographic thin sections

Qing-Zhu Yin

Department of Geology University of California-Davis

^S College of Charleston NSF Workshop on LA-ICP-MS March 8, 2013

Technical Brief Volume 13, Number 3 21 March 2012 Q03017, doi:10.1029/2011GC004027 ISSN: 1525-2027

Published by AGU and the Geochemical Society

A trio of laser ablation in concert with two ICP-MSs: Simultaneous, pulse-by-pulse determination of U-Pb discordant ages and a single spot Hf isotope ratio analysis in complex zircons from petrographic thin sections

Darren L. Tollstrup

Department of Geology, University of California, One Shields Avenue, Davis, California 95616, USA

Lie-Wen Xie

State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029, China

Josh B. Wimpenny

Department of Geology, University of California, One Shields Avenue, Davis, California 95616, USA

Emily Chin and Cin-Ty Lee

Department of Earth Sciences, Rice University, Houston, Texas 77005, USA

Qing-Zhu Yin

Department of Geology, University of California, One Shields Avenue, Davis, California 95616, USA (qyin@ucdavis.edu)

Earth and Planetary Science Letters 361 (2013) 120-133

On the origin of hot metasedimentary quartzites in the lower crust of continental arcs

Emily J. Chin^{a,*}, Cin-Ty A. Lee^a, Darren L. Tollstrup^b, Liewen Xie^c, Josh B. Wimpenny^b, Qing-Zhu Yin^b

^a Department of Earth Science, Rice University, Houston, TX 77005, USA

^b Department of Geology, University of California Davis, Davis, CA 95616, USA

^c State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Tollstrup et al (2012)

AFM Image and Depth Profile of 91500

Characterising pit depth: AFM

Sapphire: 50 pulses ~ 800nm depth

Characterizing pit depth of Si with AFM

Table 2. Data Acquisition Parameters	
	Description/Value
	HR-SF-ICP-MS
Isotopes measured	²⁰⁴ (Pb + Hg), ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U
Settling time	1 ms
Samples per peak	100
Mass window (%)	3
Sample Time	20 ms for ²⁰⁷ Pb, 10 ms for all other isotopes
Segment duration	60 ms for ²⁰⁷ Pb, 30 ms for all other isotopes
Cycles	350
Total time	76 s
	MC-ICP-MS
Isotopes measured	¹⁷² Yb, ¹⁷³ Yb, ¹⁷⁵ Lu, ¹⁷⁶ Hf, ¹⁷⁷ Hf, ¹⁷⁸ Hf, ¹⁷⁹ Hf, ¹⁸⁰ Hf
Integration time	0.131 s
Settling time	3 s
Baseline type	On-Peak Zeros
Baseline duration	60 s

Note the Dwell time

Four stds after every five unknowns (Tollstrup et al., 2012) Down hole fractionation

Paton et al (2010)

Observed correlation

(Red: exponential fit line)

"Corrected 206Pb/238U ratios show no variability with time, indicating that the fitted exponential curve is a suitable model for downhole elemental fractionation."

????

Paton et al (2010)

Cubic spline fit of Zircon 91500 applied to Temora

Geochemistry Geophysics PATON ET AL.: IMPROVED LASER ABLATION U-Pb GEOCHRONOLOGY 10.1029/2009GC002618 Geosystems

Our work (Chin et al., 2013 EPSL)

Unravel complexity through wise spot choices

Borrowing AGU 2011 Workshop Slides from Gehrels et al

Out of single zircon, we can accomplish something very similar to this!!

Chin et al. (2013) EPSL

Tollstrup et al (2012 G^3)

Tollstrup et al (2012 G^3)

Tollstrup et al (2012 G^3)

Conclusion

- We have developed a technique for the simultaneous in situ determination of U-Pb ages and Hf isotope ratios from a single spot in complex, discordant zircons by combining both a single-collector and a multicollector sector field inductively coupled plasma-mass spectrometry (ICP-MS) with a 193 nm excimer laser ablation system.
- Accurately to within 0.3–2.5% (2σ) compared to the nominal value, internal errors are better than 0.4–0.7%; hafnium isotope <0.008%.

- We applied the technique to complex, discordant zircons with variable ²⁰⁶Pb/²³⁸U and ²⁰⁷Pb/²³⁵U ratios, commonly discarded previously as "un-reducible data," to construct a Discordia in U-Pb Concordia plot, using every scan/cycle, every laser pulse as individual data points from a single laser ablation spot (typically > 200–250 data points).
- We show that the upper and lower intercept ages from the Discordia, augmented by high precision Hf isotope data obtained on the same spot, reveal invaluable information that permit unique insight to geological processes not available by other means.

Conclusion

Someone's trash

is someone else's treasure

Conclusion

"Don't throw the baby out with the bathwater"

Need software development