

## U/PB DATING OF CA-TREATED ZIRCONS OBTAINED BY LA-ICP-MS AND ID-TIMS

## VON QUADT<sup>1</sup>, AND I. PEYTCHEVA<sup>1,2</sup>

- 1: Department of Earth Sciences, Institute of Geochemistry and Petrology, ETH Zurich, Switzerland
- 2: Bulgarian Academy of Science, Geological Institute, Sofia, Bulgaria

- Short introduction to the CA technique
- TIMS results of CA and non-CA measurements
- Laser parameter at ETH Zurich
- Ablation behaviour of CA and non-CA treated zircon standards
- LA-ICP-MS results of CA and non-CA treated geological samples (0 600 Ma)
- Conclusion

## Outline



## CA - technique

- Annealing at 850 °C, 48 h
- Leaching with conc. HF, 2 12 h, 180 °C
- Rinse with IR-H<sub>2</sub>O, several times
- Leaching/washing with 6N HCL, hot plate, 80 °C, 24 h
- Rinse with IR-H<sub>2</sub>O, several times

- Total elimination of discordance by Pb loss
- Removing zircon domains with "lead loss" component
- J. Mattinson, 2005, Chemical Geology, 220, 47 - 66

## EHzürich



Concordia diagram (A) and ranked ages (B) of zircon analyses from sample SH16(18) obtained from different approaches aimed at minimizing the effects of Pb loss. SEM image of a zircon shows the effects of chemical abrasion following annealing (uncertainties are given at the 95% confidence level).

Mundil, R. et al. (2004). Science 305, 1760.

## CA-technique: CA-ID-TIMS example



| Laser ablation                 |                                                                                      |  |  |  |  |  |  |  |  |
|--------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| system                         |                                                                                      |  |  |  |  |  |  |  |  |
| Make, Model & type             | Resonetics Resolution 155                                                            |  |  |  |  |  |  |  |  |
| Ablation cell &                | Laurin Technics 155, constant geometry, aerosol dispersion volume $< 1 \text{ cm}^3$ |  |  |  |  |  |  |  |  |
| volume                         |                                                                                      |  |  |  |  |  |  |  |  |
| Fluence (J.cm <sup>-2</sup> )  | $\sim 2.0 \text{ J.cm}^{-2}$                                                         |  |  |  |  |  |  |  |  |
| Repetition rate (Hz)           | 4 Hz                                                                                 |  |  |  |  |  |  |  |  |
| Spot size (um)                 | 30 um                                                                                |  |  |  |  |  |  |  |  |
| Sampling mode /                | Single hole drilling, 5 cleaning pulses                                              |  |  |  |  |  |  |  |  |
| pattern                        |                                                                                      |  |  |  |  |  |  |  |  |
| Carrier gas                    | 100% He, Ar make-up gas combined inside ablation cell funnel.                        |  |  |  |  |  |  |  |  |
| He Cell carrier gas            | 0.71/min                                                                             |  |  |  |  |  |  |  |  |
| flow (l/min)                   |                                                                                      |  |  |  |  |  |  |  |  |
| <b>ICP-MS Instrument</b>       |                                                                                      |  |  |  |  |  |  |  |  |
| Make, Model & type             | Thermo Element XR SF-ICP-MS                                                          |  |  |  |  |  |  |  |  |
| Sample introduction            | Ablation aerosol only, squid aerosol homogenization device                           |  |  |  |  |  |  |  |  |
| Make-up gas flow               | 0.951/min Ar                                                                         |  |  |  |  |  |  |  |  |
| (l/min)                        |                                                                                      |  |  |  |  |  |  |  |  |
| Detection system               | Single detector triple mode SEM, analog, Faraday                                     |  |  |  |  |  |  |  |  |
| Masses measured                | 202, 204, 206, 207, 208, 232, 235, 238                                               |  |  |  |  |  |  |  |  |
| Integration time per peak (ms) | 12 ms (masses 202, 204), 20 ms (masses 208, 232, 235, 238), 40 ms (masses 206, 207)  |  |  |  |  |  |  |  |  |

## Equipment at ETH Zurich







## 91500 zircon



## **Comparison CA- and non-CA treated GJ-1 zircon**

Similar ablation behaviour of CA- and non CA treated GJ-1 zircon standard



**Non-CA** treated zircons: individual <sup>206</sup>Pb/<sup>238</sup>U ages between 551±20 Ma and 628±23 Ma with average age 566±4 Ma.

**CA-treated** zircons: Concordia age of 590±4 Ma, whereas the individual zircons are older than 570 Ma (<sup>206</sup>Pb/<sup>238</sup>U age from 574±16 Ma to 604±16 Ma)

Metadiorite Struma Unit (Western Bulgaria); U 40 and 370 ppm

## EHzürich





Sample DG026 represents a granodiorite from the Romanian part of the >1600 km long Cretaceous magmatic belt in Eastern Europe

Uranium concentrations vary between 498 ppm and 682 ppm

CA-ID-TIMS yields a concordia age of 76.413± 0.088 Ma.

Difference in <sup>206</sup>Pb/<sup>238</sup>U ages acquired from non-CA and CA treated zircons that are 74.14±0.65 Ma and 76.13±0.45 Ma (95% conf.), respectively.

Scatter of the CA treated zircons is smaller.

## **Mesozoic magmatic zircons**



Andesite of the Cu-Au porphyry deposit at Buchim, (Macedonia).

Zircons: high uranium between 834 ppm and 2298 ppm

CA-ID-TIMS age is 24.480±0.048 Ma.

The obtained LA-ICP-MS <sup>206</sup>Pb/<sup>238</sup>U average age of the CA-treated zircons is 24.41±0.21 Ma and they overlap perfectly with the ID-TIMS data, whereas the non-CA-treated zircons yield an age of 23.50±0.25 Ma.

An important observation is that CA treatment appears to reduce age scatter. Scatter of the <sup>206</sup>Pb/<sup>238</sup>U ages of 0.29 Ma for CA-treated zircons is lower, compared to a greater scatter (0.73 Ma) for non-CA zircons.

## Cenozoic magmatic zircons



## Kos island, Greece

## Quaternary sample (Rhyolite)

number of analyses



Summary non-CA, CA-LA-ICP-MS and CA-ID-TIMS ages,

grew box represents the uncertainty of LA-ICP-MS measurements (Koslar et al., 2013)

Von Quadt et al. (2014), JAAS, doi: 10.1039/c4ja00102h

- The CA procedure employed on zircon grains leads to a U/Pb age precision of 0.1 0.2 % (CA-ID-TIMS) and to < 1.5 % (CA-LA-ICP-MS).</li>
- <sup>206</sup>Pb/<sup>238</sup>U dates obtained by CA-ID-TIMS and CA-LA-ICP-MS overlap within the analytical uncertainty.
- LA-ICP-MS ages for zircon grains, which have been treated by chemical abrasion (CA), show less scatter of the U/Pb data compared to the non-CA treated zircon set.
- The CA technique efficiently eliminates discordance caused by Pb loss or crystal damage caused by the alpha dose; reduction of the data scatter, the relative error uncertainties up to 50%.
- The differences of the <sup>206</sup>Pb/<sup>238</sup>U weighted mean ages obtained from CA- and non-CA treated zircon crystals are in a range up to 4 8%.

## Summary and outlook



# **CL zircon images after Chemical Annealing**

Annealing and leaching – AvQ 244 Granite (300 Ma), DG 026 Granodiorite (80 Ma)

| March 2014, Dept. E.Sci, ETH Zurich |            |          |                   | Ages   |             |      |            |     |            |     |             |      |
|-------------------------------------|------------|----------|-------------------|--------|-------------|------|------------|-----|------------|-----|-------------|------|
| Identifier                          | ICPMS Type | quantity | Uppm <sup>1</sup> | Th/U   | 207Pb/206Pb | 2s   | 206Pb/238U | 2s  | 207Pb/235U | 2s  | 208Pb/232Th | 2s   |
|                                     |            |          |                   |        |             | abs  |            | abs |            | abs |             | abs  |
| non-CA <sup>2</sup>                 |            |          |                   |        |             |      |            |     |            |     |             |      |
| GJ-1                                | Elan       | n = 64   | 386               | 0.0286 | 614         | 19.9 | 600.2      | 2.3 | 603.7      | 4.2 | 603.2       | 13.4 |
| Plesovice                           | Elan       | n = 22   | 721               | 0.0566 | 402         | 61.2 | 343.4      | 2.8 | 351.9      | 9.3 | 381.0       | 30.3 |
| non-CA <sup>2</sup>                 |            |          |                   |        |             |      |            |     |            |     |             |      |
| GJ-1                                | Element-XR | n = 36   | 318               | 0 0214 | 609         | 28   | 600.7      | 07  | 602.3      | 0.5 | 600.3       | 56   |
| Plesovice                           | Element-XR | n = 9    | 595               | 0.1003 | 339         | 5.6  | 335.1      | 0.6 | 335.4      | 0.7 | 334.5       | 4.3  |
| Temora 2                            | Element-XR | n = 13   | 152               | 0.4748 | 414         | 8.0  | 419.1      | 1.2 | 418.8      | 0.8 | 417.1       | 6.8  |
| 91500                               | Element-XR | n = 18   | 76                | 0.5572 | 1068        | 5.1  | 1066.3     | 2.3 | 1066.3     | 2.6 | 1060.3      | 7.0  |
| CA <sup>3</sup>                     |            |          |                   |        |             |      |            |     |            |     |             |      |
| GJ-1                                | Element-XR | n = 30   | 326               | 0.0363 | 607         | 3.7  | 599.6      | 1.3 | 601        | 1.4 | 603.6       | 7.2  |
| Temora 2                            | Element-XR | n = 10   | 176               | 0.4509 | 419         | 12.5 | 417.2      | 1.6 | 418.6      | 2.9 | 412.3       | 6.5  |
| non CA <sup>2</sup>                 |            |          |                   |        |             |      |            |     |            |     |             |      |
| Temora 2 <sup>4</sup>               | Element-XR | n = 24   | 89                | 0.45   | 405.5       | 7.4  | 419.1      | 1.6 | 417.4      | 2.1 | 415.8       | 4.6  |

<sup>1</sup> concentration uncertainty c.20%

<sup>2</sup> data not treated by chemical annealing, primary zircon standard GJ-1 non-CA

<sup>3</sup> data are treated by chemical annealing, primary zircon standard GJ-1, CA

<sup>4</sup> non CA Temora is referenced to a CA GJ-1

# Selected results of CA and non-CA treated zircon standard measurements