Interpretation Limits

Significance of n (ages in cluster/population) and N (ages from sample)

Dealing with discordant data

Comparing age distributions from different samples
Grain complexities \& portrayal of ages

George Gehrels
Arizona LaserChron Center
Department of Geosciences
University of Arizona

Significance of \mathbf{n} (analyses in a cluster) and \mathbf{N} (analyses from a sample)

Depends on objective of study:

- Provenance of clastic detritus
- Correlation of units
- Characterization of source area(s)
\rightarrow Generate age distribution that accurately reflects ages in sample
- Recognition of specific age
\rightarrow Identify specific age with greatest confidence
- Maximum Depositional Age
\rightarrow Identify youngest age with greatest confidence
For all, Larger $\mathrm{N} \rightarrow$ larger $\mathrm{n} \rightarrow$ more robust conclusions
Depends on geological diversity of source areas and analytical complexities
Challenges and Strategies depend on age!

A young example.....

A multi-dimensional future:

- Multiple analyses on each grain
- Oxygen isotopes
- Hf isotopes
- Li isotopes
- REE patterns
- Trace elements
- Spectroscopic properties
- He age
- FT age

0.1
0.2
0.3

 Small n has significance!

Ages scattered \rightarrow complex systematics Beware small/moderate n!

Sorry, no cookbook available.....

List all the ages!!!

Probability Density Plot

DZ AGES				
MIN AGE	MAX AGE	\# GRAINS	PEAK AGE	\# GRAINS
195	212	6	203	6
321	347	11	335	11

"Age Pick" program (Gehrels et al., 2006; www.laserchron.org)

If you assume that grains are cogenetic....

335 Ma present? \rightarrow yes! 350 Ma present? \rightarrow no!

Max Depositional Age

58 samples of known depositional age (Dickinson \& Gehrels, 2009, EPSL)

YOUNGEST SINGLE GRAIN

16 of 58 too young!

> WEIGHTED MEAN AGE OF YOUNGEST 2 (OR MORE)
> 5 of 58 too young

WEIGHTED MEAN AGE
OF YOUNGEST 3 (OR MORE)
2 of 58 too young!

Max Depositional Age

58 samples of known depositional age
(Dickinson \& Gehrels, 2009, EPSL)

METHOD	TOO YOUNG	USEFUL (WITHIN 5 Ma)
Youngest Single Grain:	16 of 58	26 of 58
Youngest Prob Peak (2 or more):	6 of 58	21 of 58
Weighted Mean (2 or more):	5 of 58	22 of 58
Weighted Mean (3 or more):	2 of 58	16 of 58

\Rightarrow Use variety of methods, depending on samples?
\Rightarrow Develop better tools for identifying first-cycle grains?

Dealing with discordant data -- an old example.....

An example of impact of discordia filtering (~11K analyses from Tibet)

In practice, for now....

Ages scattered \rightarrow complex systematics! tight filter/weighting
Ages highly biased

Dealing with discordant data -- An example of intermediate age

Ages less precise, Pb loss $\&$ inheritance common \rightarrow use discordant ages with caution!

Sorry, no cookbook available....
Make sure operators understand complexities
Avoid biasing results!
Avoid dividing clusters!

Comparing age distributions: Presence/Absence vs proportions?

"Normalized Prob Plot" program (Gehrels, 2000; www.laserchron.org)

Presence vs Absence of ages -- Attempt to quantify....

Also look at proportions of overlapping ages....

"Degree of Similarity" program (Gehrels, 2000; www.laserchron.org)

Most common comparison tool = K-S statistic

K-S statistic

$\mathrm{P}=0.00$ for Ref $1 \& 3-5 \rightarrow$ high probability that sample is significantly different from others $P=0.38$ for Ref $2 \rightarrow$ low probability that sample is significantly different from Ref 2

K-S Test: very sensitive to proportions!

\rightarrow Need better tools for comparing presence/absence!!

Grain complexities \& portrayal of ages

The ability to determine multiple ages on the same crystal presents:

Opportunities:

\rightarrow Determining more robust ages
\rightarrow Using crystallization history (rather than events) as a provenance tool
\rightarrow Reconstructing igneous/thermal history of known source area Challenges:
\rightarrow Which zone(s) to analyze? (all!)
\rightarrow Should ages from rims, mantles, and cores be combined on a PDP? (yes!)
\rightarrow Should each analysis be included on a PDP, or just the mean of each domain? (all!) But cannot base comparisons on proportions of ages!

When is a population geologically meaningful ($n=1$)?
\rightarrow Requires analysis of data to ensure robustness \& understand complexities
\rightarrow Depends on diversity of source area \& complexity of data
\rightarrow Depends on objectives of analysis \& confidence needed in result
\rightarrow No "cookbook" available.....
\Rightarrow Need better methods of describing age population
Describing youngest age component and the maximum depositional age?
\rightarrow Youngest grain commonly informative, but commonly too young
\rightarrow Youngest multigrain peak is more robust, but less commonly useful
\rightarrow Use method(s) appropriate for study!?
\rightarrow Need better methods of identifying first-cycle grains
Dealing with discordant data (clustering versus concordancy)
\rightarrow Need to understand origin of discordance
\rightarrow Rejecting discordant data or applying discordance filter/weighting will bias results
\rightarrow Retaining discordant data will commonly yield ages that are too young
\rightarrow Upper intercepts may be most accurate (only if grains are cogenetic!)
\rightarrow Issues are most challenging for intermediate (Proterozoic) ages
\rightarrow Clustering is a useful indicator of complexity
\rightarrow No "cookbook" available - need to treat each sample differently!
\rightarrow Need to make sure operators understand complexities.....

Comparing age distributions from different samples
\rightarrow Probability Density Plot is useful, especially if normalized
\rightarrow Presence vs absence is objective means of comparison
\rightarrow All comparison methods that factor in proportions of ages are risky because of geological, analytical, and interpretive biases
\rightarrow Need better tools that are not/less sensitive to proportions of ages

Grain complexities \& portrayal of ages
\rightarrow Ability to generate multiple ages from each grain presents great opportunities!
\rightarrow Most powerful if complementary data available
\rightarrow PDP may not be best method of capturing histories and processes
recorded by these data
\rightarrow Multidimensional analysis tools are needed.....

