

SQUID from the Sea to the Cloud – the past, present and future of SIMS data processing

Statistical Interpretation of Age Information, LA-ICP-MS and Beyond

Keith Sircombe, Simon Bodorkos, Andrew Cross, Les Sullivan

APPLYING GEOSCIENCE TO AUSTRALIA'S MOST IMPORTANT CHALLENGES

A brief history of crustacean data processing

Details: the seven questions

- 1. Uncertainty propagation protocol/workflow
- 2. Common Pb correction methods
- 3. Method of inter-element and inter-isotope fractionation correction
- 4. Weighted mean/linear regression support
- 5. Rejection criteria
- 6. Handling/storage of reference values for normalization
- 7. Key differences from other available packages \checkmark

Workflow: sample

GEOSCIENCE AUSTRALIA

Geoscience Australia 2012

SQUID from the Sea to the Cloud

Workflow: data acquisition*

SET 1	TITLE: 433.002.1.	1 DEAD	TIME / ns: 12	Normalise t	o SBM OFF,	
name		2	3	4	5	
196Zr20	31894	33987	34971	36422	36960	
204Pb	2	2	2	2	4	
Bkgnd	0	1	3	4	1	
206Pb	5980	6021	5762	5764	6005	R
207Pb	1044	1099	1089	990	1092	
208Pb	585	604	564	572	636	
238U	15651	16112	16269	16903	17073	R
248ThO	22677	22819	22825	22969	23202	
254UO	37947	37813	38126	38394	38550	
270UO2	14543	14200	14037	14325	14162	

* assuming single-collector and focussed on ²⁰⁶Pb/²³⁸U

Workflow: 'raw' data formats

```
    <set>

     <
SHI
           <par name="date" value="2011-05-12" />
ana
   <
           <par name="time" value="13:17:52" />
11( - <
           <par name="qt1y" value="-193" />
           <par name="gt1y_volts" value="-4870.4" />
**:
M2!
           <par name="qt1z" value="263" />
set
           <par name="eqy" value="0.00" />
C:N
           <par name="egz" value="0.00" />
Naı
196
           <par name="prealphay" value="553" />
204
           <par name="pbm" value="-2.5nA" />
Bkg
           <par name="eisie_cps" value="5.000000,10.000000,15.000000,20.000000,25.000000" />
201
20%
           <!-- eisie cps have zeros subtracted -->
208
           <par name="eisie_date_time" value="1904-1-1T10-0-0" />
23{
         - <scan number="1">
24(
254
           - <measurement>
270
               <par name="detectors" value="12" />
AMU
               <par name="trim_mass" value="195.787512" />
0
               <par name="time_stamp_sec" value="17.000000" />
0
               <par name="autocentering_result" value="ok" />
               <!-- can be "ok" "failed" "insufficient counts" -->
0
               <par name="autocentering_detector" value="1" />
0
               <data name="196Zr20">3928,3908,3909,3869,3921,3949,3889,3935,3921,3910</data>
               <data name="SBM">55911,55929,55945,55996,56022,55978,55971,55926,55948,55942</data>
0
             </measurement>
0
           - <measurement>
               <par name="detectors" value="12" />
0
               <par name="trim_mass" value="203.952521" />
               <par name="time_stamp_sec" value="33.000000" />
0
               <par name="autocentering result" value="ok" />
0
               <!-- can be "ok" "failed" "insufficient counts" -->
               <par name="autocentering_detector" value="1" />
0
               <data name="204Pb">0,0,1,1,0,0,2,1,2,0</data>
1
               <data name="SBM">559348,559293,559382,559156,559134,559189,558956,558949,559049,559017</data>
             </measurement>
1
           - <measurement>
1
               <par name="detectors" value="12" />
               <par name="trim_mass" value="204.002521" />
```

Details: uncertainty propagation

Chemical Geology 197 (2003) 111-142

www.elsevier.com/locate/chemgeo

Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass

Richard A. Stern^{a,*}, Yuri Amelin^b

^a J.C. Roddick Ion Microprobe Laboratory, Geological Survey of Canada, Natural Resources Canada, Ottawa, ON, Canada K1A 0E8 ^b Royal Ontario Museum, 100 Queen's Park, Toronto, ON, Canada M5S 2C6

Received 21 March 2002; accepted 26 September 2002

Abstract

Analytical errors calculated for individual spot 206 Pb/ 238 U measurements of zircon analyzed using high mass resolution secondary ion mass spectrometry (HR-SIMS, e.g., SHRIMP II) were assessed using natural zircon (z6266) and synthetic glass standards (NIST SRM 610). Evidence for U/Pb homogeneity of these materials includes new thermal ionization mass spectrometry (TIMS) U–Pb analyses of 22 fragments of z6266 zircon from two laboratories, which are identical within error and yield a weighted mean 206 Pb/ 238 U age of 559.0 ± 0.2 Ma. TIMS U–Pb analyses of the SRM 610 yielded homogeneous 206 Pb/ 238 U = 0.2566.

Workflow

Processing stage	Source of uncertainty	Description
U-Pb isotopic analysis of unknown zircon	Counting statistics - Propagated to ratios via double interpolation	Within-spot uncertainty
Background and common Pb corrections	Common Pb	Within-spot uncertainty
Assessing reference ('repeatability')	U-Pb discrimination	Within-session uncertainty S&A: "internal" L: "external spot-to-spot"
Calibration to reference ('reproducibility')	Age calibration	Between-session uncertainty S&A: "external" L: "error of mean"

Workflow: Initial processing

- Normalise counts to Secondary Beam Monitor as portion of total secondary signal (typically <1% variation)
- Subtract background measurement taken near ²⁰⁴Pb mass

Workflow: ratio calculation – double interpolation

Dodson M H 1978 A linear method for second-degree

ARTICLE INFO

ABSTRACT

Article history: Received 27 January 2009 Received in revised form 9 July 2009 Accepted 10 July 2009

Editor: R.L. Rudnick

Measurement of isotope ratios via double interpolation of cyclic peak jumping produces error correlations between time-adjacent ratios which, if ignored, result in underestimated errors of their means. Equations that incorporate the error correlations are derived, and an example given for a typical U–Pb/zircon analysis via ion microprobe showing that isotope-ratio uncertainties for a single spot are usually underestimated by factors of 1.2–1.3.

© 2009 Elsevier B.V. All rights reserved.

Workflow: ratio calculation - double interpolation

Geoscience Australia 2012

Workflow: ratio calculation - double interpolation

- Outlier rejection by sequential removal of ratios and recalculation of MSWD. If MSWD reduction > set factor (3) then reject.
- If Prob. Fit > 0.05: weighted mean
- If Prob. Fit < 0.05: Tukey's Biweight

Workflow: normalise signal, common Pb, etc.

- Direct measurement of ²⁰⁴Pb (²⁰⁷Pb corr. in Phanerozoic)
- Calculation of assumed ²⁰⁴Pb/²⁰⁶Pb ²⁰⁴Pb/²⁰⁷Pb based on Stacey and Kramers (1975) two-stage model.
- Correction usually minor and generally reject analyses > 2% common Pb as unreliable measurements
- Correct ²⁰⁶Pb and ²⁰⁷Pb based ratios as required...
- Also monitor potential overcounts on ²⁰⁴Pb by assuming concordance in reference ²⁰⁶Pb*/²³⁸U and ²⁰⁷Pb*/²³⁵U and calculating non-²⁰⁴Pb counts to explain any discordance

Workflow: calculate calibration constant

Geoscience Australia 2012

SQUID from the Sea to the Cloud

Workflow: spot-to-spot uncertainty

Geoscience Australia 2012

Workflow: homework

SQUID

Rev. 2.50

A User's Manual

Ken Ludwig Berkeley Geochronology Center April 12, 2009

GEOSCIENCE AUSTRALIA

(Geoscience Australia) 2012

SQUID from the Sea to the Cloud

Details: the seven questions

- 1. Uncertainty propagation protocol/workflow
- 2. Common Pb correction methods \checkmark
- Method of inter-element and inter-isotope fractionation correction
- 4. Weighted mean/linear regression support
- 5. Rejection criteria
- 6. Handling/storage of reference values for normalization
- 7. Key differee and in the second sec

26	Microsoft Exc	cel - Pre	lim re	ductio	n 24-(01-201	10.xls																							_ 0	\times
1	<u> </u>	<u>V</u> iew <u>I</u> n	sert	F <u>o</u> rmat	<u>T</u> ools	Data	a <u>W</u> in	dow	Isoplo	: 🔳	<u>H</u> elp	Sguid2	Ado <u>b</u> e P	DF													Type a	question f	or help	P	×
) 📂 🖬 🔒	a 4	<u>à</u>	ABC 🛍	X	b 🔁	I	'∣ <u>A</u> ↓		75%	- 2	Arial		↓ 1	11 🗸 🖪	ΙŪ	abe	≡ ≡		11111 444		i 📰	III 8	} + \$	%	, 1	.0 .00 0		🛄 🕶 👌	• <u>A</u>	
	ı 🖆 🖄 🖾	🔁 🖄	33	5 💆		🖻 🕬	Reply	with <u>⊂</u> h	anges.	E <u>n</u> d R	leview.		12 12 1	5 📮 🛙 🗹	i - 🖉			/		۵ م	Securit	y	2 🛠	e 🔽	ø.						
															i 🥜 🕴	87 🛃 🏚	P	• °	9	1 🔁 V	WY I	∄ • ⊪	· + + (@ 🗴	(🍩	0					
	A57	-	<i>f</i> ∗ T.	.50.1.1.	dup1							-																			
1	A Isotope Rat	i v	X	Υ	2	AA	AB	AC	AD	AE A	VF A	(Gi	AH	AI	AJ	AL	AM	AN	AU A	AU	AH	AS	AT	AU	AV	AW	AX	AY	AZ	BA	- ^
2	(errors are 1 σ) SHRIMD SM(v2)	uid spot-	time, f	or isoto	pe ratio	os of th	ie sam	e elem	nent a	t mid sp	ot-time	e, for is	otope rati	os of diffei	rent eleme	nts at mid	spot-	time													
4	from file:	1																													
5	-															4-corr													•		
																206Pb											204	204			
		206	%	270	%	206	%	Ln	%	Ln	%					calibr.	%	Age		4-corr ppm	4-corr 208Pb*	%	ppm j	ppm 3	232Th	%	overcts /sec	overcts /sec	204 /206	%	
6	Spot Name	270	err	/254	err	/254	err	UO/U	err	Pb/U ε	err <u>Fx</u>	po Ex	oo_Used	Med 4/6	StDev 4/6	const	err	(Ma) ±	±1σ	206*	/206Pb*	err	U	Th	/238U	err	(fr. 207)	(fr. 208)	(fr. 207)	err (1	<u>ir</u>
40	T.34.1. T.35.1.	0.06025	1.12	0.3947	0.41 0.	.02379 .02327	1.00 1	.8218	0.24 - 0.43 -	1.938 O.	56 63					0.006960	1.12	406	4	1.107	0.148	3.08 8.57	246 74	25	0.499	0.40	0.0224	0.022	0.000461	22	
42	T.36.1.4	0.06050	0.66	0.3876 0.3898	0.44 0. 0.73 0	.02346	0.59 1	.8265 I	0.25 -	1.927 O. 1.915 O	37 44					0.006928	0.64	412 422	3	0.209	0.167	3.17 4.83	221 159	110 39	0.513	0.42	0.0574	-0.099	0.000005	1E+3 36	:
44	T.50.1.	0.06054	0.68	0.3911	0.45 0.	.02367	3.28 1	.8190	0.27 -	1.925 0.	39					0.007043	3.06	419	42	-0.112	0.144	2.68	202	93	0.475	0.44	-0.0582	0.060	0.000058	100	2
45 46	T.39.1.4 T.40.1.4	0.06062	0.61 0.84	0.3889 0.3883	0.41 0. 0.55 0.	.02359 .02335	0.55 1	.8224 .8146	0.24 - 0.32 -	1.925 O. 1.943 O.	35 47					0.006995	0.59 0.81	416 415	23	0.060	0.148 0.155	2.32 18	252 133	120 67	0.490 0.520	0.39 0.52	0.0300 -0.0483	0.083 0.065	-1.6E-5 0.000026	309 274	1
47	T.41.1.1	0.06074	0.84	0.3869	0.55 0	.02350	0.75 1	.8218	0.32 -	1.928 0.	48					0.006966	0.81	414	3	0.114	0.144	17	126	59	0.482	0.54	0.0309	0.058	-3.4E-5	258	-
48 49	T.42.1.1 T.43.1.1	0.06081	0.84 0.79	0.3894	0.55 0. 0.53 0.	.02371 .02391	0.75 1	.8117 .8461	0.32 - 0.31 -	1.930 D. 1.888 D.	47 46					0.007060	0.81	420 416	3	-0.101	0.086	5.31 4.01	131 136	38 37	0.301 0.278	0.65	-0.0352	-0.049	0.000077	92 47	
50	T.44.1.1	0.06210	0.96	0.3866	0.64 0.	.02399	0.86 1	.8169	0.37 -	1.914 O.	55					0.007115	0.94	423	4	0.445	0.090	6.34	96 465	32	0.347	0.71	0.0371	0.126	0.000094	87	-
51	T.45.1.4 T.46.1.4	0.06188	0.73	0.3893	0.49 0. 0.62 0.	.02400	0.65 1	.8216	0.28 - 0.37 -	1.908 O. 1.910 O.	42 54					0.007101	0.72	422 429	3 4	-0.987	0.146	3.23 5.60	100	78 31	0.490	0.47	-0.1440	-0.127	-6.8E-5 0.000016	508	-
53	T.47.1.1	0.06054	0.80	0.3866	0.53 0. 0.61 0	.02343	0.71 1	.8279 I 81.28 I	0.31 - 0.36	1.926 O. 1.907 O	46 50					0.006924	0.77	412 429	3	0.051	0.155	3.00	140 104	64 30	0.469	0.52	-0.0253	-0.089	0.000100	68 204	
55	T.38.1.	0.05988	0.81	0.3877	0.53 0.	.02321	0.72 1	.8192	0.30 -	1.944 O.	45					0.006899	0.05	411	3	0.053	0.112	3.62	139	46	0.344	0.59	0.0229	-0.040	-3.8E-5	180	
56 57	T.49.1.1 T.50.1.1dup		0.79 5.01	0.3923 0.3893	0.52 0. 0.54 0	.02360	0.71 1	.8305 I 8244 I	0.30 - 0.31 -	1.916 O. 1.916 O	45 47					0.006992	0.77 0.79	416 417	3	-0.400 0.264	0.168	3.14 3.43	140 131	67 64	0.496 0.501	0.50 0.52	-0.0939 0.0375	-0.138 0.046	0.000039	175 188	:
58		0.00000	0.01	0.0000	0.04 0.	.02000	0.10 1	.0244	0.01 -	1.010 0.						0.001000	0.10		3	0.204	0.102	0.40	101	04	0.001	0.02	-0.0035	-0.005	0.000001	100	
60 61	-	lass 95.8	SBM +0	%offs` L02	<u>2σ e</u> 0.0	err)3							Wtd Mea	an of Std F 1o erro	Pb/U calibr. or of mean	0.007008 0.19%	Б	Redo									±0.02	±0.02			=
62	-	03.9	+0	.03	0.0)3						1	σ externa	al spot-to-	spot error	1.06%															
63 64	-	204 05.9	-0 -0	.03	0.0)2)3									MSWD Prob. of fit	2.85															
65		06.9	-0	.04	0.0	03								reject	ed spot #s	22,23,38															
66 67		07.9 238	 +0	.01	0.0)2							OF VISUALIZA	auon & prei	iminary evai	uation only															
68 69	-	248 254	-0 +0	.01	0.0)2)3					480	, <u>1</u>		г	2ø error	bars															
70	-	70.1	+0	.01	0.0	02		_			460	p <mark> </mark>																			
72		r													г																
73 74	-	[는 음 421	-I-I-I	afra	f_ [fffff	~ [m]	nll,															
75											d A O	• 4	րիենկեն	-1 14-1	[[41]44	" [[¹															
76 77		0 °	<u>e</u>		~~`	<u>،</u> د	•				祊 400			đ	+ L																
78 79	-		Č.								380	2		1																	
80		ł									360) [· · · · ·	.	· · · · · ·																
82	-	 										U	20	40 Houre	60																
83 84		38 2	08 M	228 lass Ste	248 ation	26	8							HOUIS			_														~
H ·	< ► ► K / Con	cordia9 ,	(ProĽ	Dens1	/ 967	4 968	∕OG1	🔏 San	npleDa	ata <mark>St</mark>	tanda	rdData	<mark> sq_1</mark>	.00013_G	A6 <)							>	1Ē
Dr	aw 🔻 🔓 Auto	oShapes 🔻	1.			4	े 💈	~	<u></u> -	<u>_</u> -	A - I	-	₹ 🖣 I	i ,																	
																													NUM		

Ready

NUM

The bigger picture: SQUID in Open Source

sourceforge.net/projects/squid2

SQUID2 Beta ... bodorkos, jocky1, ksircombe09 Mailing Lists Files Reviews Support Develop Hosted Apps Summary + Home (Change File) Date Range: 2009-05-05 to 2013-02-26 DOWNLOADS 665

50 In the selected date range 40 **TOP COUNTRY *** Australia 45% of downloaders TOP OS * Windows 2009-07 2010-01 2010-07 2011-01 2011-07 2012-01 2012-07 2013-01 74% of downloaders Downloads

60

Commonwealth of Australia @ 0 (Geoscience Australis) 2012

SQUID from the Sea to the Cloud

SOPLOT	Beta .sta	bodorkos, joo	cky1, 1	United States	317	19%
			2	China	172	10%
Summary	Files	Reviews	Suppe 3	Australia	107	6%
	AN MARKAN		—4	Germany	101	6%
Hom	500 -	The second se	5	Canada	92	6%
25000	450 -		6	United Kingdom	74	4%
30000	400 -		7	Brazil	69	4%
25000			8	India	65	4%
20000	350 -		9	France	62	4%
15000 ø	300 -		10	Russia	48	3%
10000 poju	250 -		11	Japan	47	3%
5000 Mo	200		12	Mexico	39	2%
0	200 -		13	Spain	36	2%
	150 -		14	Taiwan	26	2%
	100 -		15	Finland	25	2%
	100		16	Colombia	23	1%~
	50 -	1	17	Turkey	21	1%
	0 -	·	18	Switzerland	21	1%
	S	5° 00° 00° 00°	8 ¹ 19	Italy	19	1%.8 22 230
	200	1 ² 1 ² 1	20	Chile	19	1%
				Other	271	16%
				Total last 12 months	1654	

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australis) 2012

SQUID-2: Issues

- Distribution and installation
- Version control
- Dependency on Excel (2003)
- Documentation of algorithms

 Commonwealth of Australia (Geoscience Australia) 2012

Option #1: Update SQUID + ISOPLOT to Office 2010

- Bring applications up-to-date
- © Encourage use
- 8 Requires resources for developer/s

Option #2: Testing virtualisation at GA

- Enterprise-scale 'vCloud'
- Server runs WinXP, Office 2003. Accessible by browser, behaves like desktop
- Successful tests of SQUID-2
- Installation issues
- Potential on-going cost for licences
- A way forward??

Option #3: New application?

- Reduce dependency on Windows/Excel environment
- Engage new users and developers
- 8 Time consuming review of options and management of new development (i.e. no hero-coding)
- 8 Create new dependencies?
- 8 Resources for developers
- 8 Debugging, maintenance, upgrades

Trends and drivers

© Commonwealth of Australia (Geoscience Australia) 2012

plied Mathematics at the University of Washington), Ian M. Mitchell (an associate professor of computer science at the University of British Columbia), and myself. One of our aims was to improve the visibility of the nascent group of tool

1521-9615/12/\$31.00 © 2012 EEE Copulated by the IEEE CS and the AP Victoria Stordden

VICTORIA STODDEN Columbia University

GEOSCIENCE AUSTRALIA

O

11

Specialist software development

GEOSCIENCE AUSTRALIA

(Geoscience Australia) 2012

SQUID from the Sea to the Cloud

Some hard-won advice

- Algorithms ≠ user interface
- No silver bullet
- Maintenance, maintenance, maintenance: an application isn't just for Christmas

SQUID 2020?

Open source algorithms and documentation reproducible, standard test data sets broad developer/maintenance community Platform-independent data processing - virtualisation in Cloud, web access web service enabled with links to other labs; Your ideas, collaboration? anyone working on Isoplot?)

Australian Government

Geoscience Australia

Questions? Discussions?

Phone: +61 2 6249 9111

Web: www.ga.gov.au

Email: feedback@ga.gov.au

Address: Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston ACT 2609 Postal Address: GPO Box 378, Canberra ACT 2601