Operating variables impacting U-Pb reproducibility

Simon Jackson, Jan Kosler, Jay Thompson, Zhaoping Yang, Duane Petts, Jamie Barbula

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017

Natural Resources Ressources naturelles Canada Canada

Content

Operating variables impacting U-Pb reproducibility – how do issues such as pulse energy, focus, water vapour in the cell and resin mount degassing impact U-Pb data?

- 1. Operating parameters
 - 1. Laser energy (fluence)
 - 2. Spot size
 - 3. Laser focus (10 and 16x demagnification)
- 2. Sample and cell degassing/desorption
 - 1. Moisture desorption in large-format sample cells
 - 2. Sample degassing (Jay Thompson)

LA-ICP-MS U-Pb zircon dating limitations

Matrix-related Pb/U fractionation:

".....it would seem that any LA-ICP-MS zircon U-Pb and ²⁰⁷Pb/²⁰⁶Pb age determination cannot be meaningfully interpreted at below a ca. 3% to 4% (2 RSD) confidence level."

(Klotzli et al., 2009).

Down hole 206Pb/²³⁸U vs. ²⁹Si/⁹⁶Zr

GJ-1 Zircon Analyzed 14 times

Calibration ²⁰⁶Pb/²³⁸U vs. ²⁸Si/⁹⁶Zr Diagram

 $(Pb_{sam}/U_{sam})_{corr} = (Pb_{sam}/U_{sam})_{meas}/(Si_{sam}/Zr_{sam})^{s}$

6

 $(Pb_{std}/U_{std}) = e^{i}$

Effect of laser fluence on ²⁰⁶Pb/²³⁸U measurements

Effect of laser spot size on ²⁰⁶Pb/²³⁸U measurements

Effect of laser focus on ²⁰⁶Pb/²³⁸U measurements

Effect of laser spot size on ²⁰⁶Pb/²³⁸U measurements

Focussing reproducibility

Solutions

- Use optical system with largest depth of laser focus;
- Mount samples and standards in same mount,
- Ensure perfect leveling of sample holder,
- Do not adjust focus between sample and standard

Effect of contaminant cell gases on Pb/U measurements

Effect of contaminant cell gases on Pb/U measurements

в Intercept Kosler et al., JAAS, 2014 -8*E-4 Ţ 0.06 -6*E-4 Intercept 4*E-4 Slope Slope ²⁹Si/96 0.07 ²⁹Si/⁹⁶Zr 0.122 0.02 -2*E-4 0.117 29Si/96Zr 0.00 0.05 1000 1500 2000 2500 0 500 ppm oxygen in He 0.112 206Pb/238U 0.04 ∩₈₂/9 907 0.107 0.102 C. 0.0018 0.105 Intercept 0.03 day 1 0.0014 utercept 0.085 0.0010 day 2 0.102 0.02 2000 2500 1500 0 500 1000 ppm oxygen in He 0.0006 Slope 0.075 206 Pb/238U 0.0002 1500 2000 2500 0 500 1000 ppm oxygen in He

Fig. 4 The effects of oxygen in the He sample carrier gas on (A) the measured signal intensity ratios of ²⁹Si/⁹⁶Zr and ²⁰⁶Pb/²³⁸U. Diagrams (B) and (C) show the separate effects of the oxygen concentration in the He sample carrier gas on the slope and the intercept⁴⁸ of the elemental fractionation trends of ²⁹Si/⁹⁶Zr and ²⁰⁶Pb/²³⁸U, respectively. Uncertainties on the intercept values are 1 sigma.

Stage movement sequence

Effect of cup position on contaminant cell gases

Effect of cup position on contaminant cell gases

Effect of cell heating on contaminant cell gases

Effect of prolonged flushing on contaminant cell gases

Influence of Atmospheric Air on U-Pb ages by LA-ICPMS

Experiment

- Variably degased epoxy mounts containing fragments of the 91500 zircon
- Atmospheric air quantified using mass 56 (⁴⁰Ar + ¹⁶O) in gas blank
- U-Pb ages quantified on the 91500 in the centre of the laser ablation cell
- Different locations in laser ablation cell have variable amounts of residual atmospheric air

Influence of Atmospheric Air on U-Pb ages by LA-ICPMS

Results

- 91500 zircon measured in different locations show significant (4%) variance in U-Pb age
- Strong correlation with residual atmospheric air and measured U-Pb age

Interpretation

- Pb/U fractionation increases in the presence of O₂ (Kosler et al. 2014) giving older U-Pb ages
- Trace atmospheric air changes the relative ionization in the ICP similar to diatomic gas addition (Durrant 1994, Kosler et al. 2014)

Kosler et al. 2014 – JAAS 29, p832

Influence of Atmospheric Air on U-Pb ages by LA-ICPMS

- Repeat of experiment after degasing all mounts >24 hours in a desiccator under vacuum
- No systematic variation in mass 56
- No bias seen in U-Pb ages regardless of position in laser ablation cell
- <u>Prerequisite: need homogenous</u> gas flows throughout laser cell!

Weighted mean of 91500 in 6 locations in laser cell: Mean = 1063.2 ± 4.5 [0.43%] 95% conf. Wtd by data-pt errs only, 0 of 6 rej. MSWD = 0.86, probability = 0.53

Desiccator

Vacuum pump

Some initial testing back in 2012 on the S-155 large format laser cell

- We mapped the signal intensity of several masses affected by atmospheric air (e.g. m/z 56) across our laser cell – the holder at the time could fit 15 1" rounds (currently used holder can fit 20).
- These tests were done before we had optimized the sample exchange procedure and show how residual atmospheric air can present itself in the laser cell
- We have since changed the sample exchange procedure and a few other things to minimize the total amount and variations within the cell of atmospheric air

Mapping of air (laser off)

correlation Between all masses Except Hg

Harmonic artefacts (prob. Unrelated to cell)

202_cps

- Tendency for higher counts correlate with holes & mounts
- no differences between
 - empty holes
 - holes filled with mounts

Vici Hg traps

- Flow rate up to 25 lpm allows all ICP-MS gases to be filtered
- Filtering He also reduces Hg background
- Hg backgrounds (²⁰¹Hg) as low as 36 cps have been attained, allowing meaningful implementation of ²⁰⁴Pb correction

Solution In-cell gas manifold

Stage movement sequence

In-cell gas manifold

Take home messages

- Immense care must be taken to ensure that operating conditions, especially laser focus, are identical for sample and standard
- Rigorous degassing of sample mounts and flushing of the sample cell are required to minimise cell contaminant gas related biases
- A cell gas distribution manifold greatly reduces contaminant gas variability within the cell.
- Mounting of samples and standards in the same mount is one way to minimise differences in both laser focus and spatial variations in contaminant gas concentrations, especially H₂O in the sample cell.