Effects & Artefacts of Annealing and Chemical Abrasion in LA-ICP-MS

Quentin Crowley, Kyle Heron & Eoghan Corbett Trinity College, Dublin, Ireland Minerals 2014, 4, 503-518; doi:10.3390/min4020503

ISSN 2075-163X www.mdpi.com/journal/minerals

Article

Chemical Abrasion Applied to LA-ICP-MS U-Pb Zircon Geochronology

Quentin G. Crowley ^{1,*}, Kyle Heron ¹, Nancy Riggs ², Balz Kamber ¹, David Chew ¹, Brian McConnell ³ and Keith Benn ⁴

- ¹ Department of Geology, School of Natural Sciences, Trinity College, Dublin 2, Ireland; E-Mails: heronky@tcd.ie (K.H.); kamberbs@tcd.ie (B.K.); chewd@tcd.ie (D.C.)
- ² School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA; E-Mail: nancy.riggs@nau.edu
- ³ Geological Survey of Ireland, Beggars Bush, Dublin 4, Ireland; E-Mail: brian.mcconnell@gsi.ie
 ⁴ Tasiast Mauritanie Limited SA, ZRA 741, BP 5051, Nouakchott, Mauritania, West Africa; E-Mail: keith.benn@kinross.com

Why use A-CA for LA-ICP-MS?

Physical Effect on Zircons

Digital Microscopy Imaging

Name: T35838

Date(m/d/y): 03/04/13

Date(m/d/y): 10/17/13

CMA

CMA /

Why use A-CA for LA-ICP-MS?

Physical Effect on Zircons

SEM MAG: 866 x Name: T37595

Det: SE Detector + CL Date(m/d/y): 11/27/13

100 µm

Digital Microscopy Imaging

SEM HV: 5.00 kV SEM MAG: 498 x Name: T37591

WD: 12.45 mm Det: SE Detector + CL Date(m/d/y): 11/27/13

_____ 200 µm

MIRA\\ TESCAN Digital Microscopy Imaging

Physical Effect on Zircons

91500

Penglai

Variation in Ablation Rate (Non-Annealed & Annealed)

E. Marillo-Sialer et al.

The zircon 'matrix effect': evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS

Variation in Ablation Rate Non-Annealed Zircon

E. Marillo-Sialer et al.

The zircon 'matrix effect': evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS

Analytical Set-Up

ICP Instrument model	
Plasma RF power (W)	Thermo-Scientific iCAP-Qs (quadrupole)
Plasma gas flow (lit/m)	0.7
LA Instrument Model	Photon Machines Analyte 193
Laser	ATLEX-SI 193 nm ArF excimer
Fluence (J/cm ²)	3.9
Repetition Rate (Hz)	4
Delay between analyses (s)	20
Ablation duration (s)	40
Carrier gas flow (lit/m)	0.65 (He), 0.006 (N ₂)
Spot diameter (µm)	30

Mud Tank Zircon Non-Annealed

U-Pb age = 732 ±5 Ma , U ppm = 6-35ppm (20-30ppm), Alpha Dose = 8.171E+13 ±6.7E+12 [8.2%], N=47, Ablation rate = 22 nm/shot (3.9J/cm²)

FCT Zircon Non-Annealed

U-Pb age = 28.38 ±0.5Ma, Uppm = (400-800ppm), Alpha Dose = 5.019E+13±7.7E+12 [15%] N=25, pit depth = 4.48 ±0.08 μ, Ablation rate = 25 nm / pulse

Penglai Zircon Annealed

U-Pb age = 4.4 ±0.1 Ma , Uppm = 70-280ppm, Alpha Dose = 2.789E+12±3.0E+11 [11%] N=25, pit depth = 4.8 ±0.1 μ Ablation rate = 27 nm / pulse

91500 Zircon Annealed

U-Pb age = 1062.4 ± 0.4 Ma , U ppm = 65-90, Alpha Dose = $3.3438E+14\pm1.7E+12$ [0.52%] N=45, pit depth = $5.5 \pm 0.7\mu$, Ablation rate = 30 nm / pulse

91500 (Annealed) Raw ²⁰⁶Pb/²³⁸U

91500 (Non-Annealed) Raw ²⁰⁶Pb/²³⁸U

Mud Tank Non-Annealed

Alpha Dose

Age vs Ablation Rate

E. Marillo-Sialer et al.

The zircon 'matrix effect': evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS

Some Conclusions - Annealing

- Zircons display a range of ablation rates a major factor in controlling this seems to be the alpha dose (U & Th ppm and age).
- Annealing results in lower ablation rates.
- However annealing does not make all ablation rates equal!
- There is likely an age bias proportional to the difference in alpha dose (and ablation rate) between the primary standard and unknowns.

Some Conclusions - CA

- CA is an effective pre-treatment tool to reduce the effects of Pb-loss and elevated common-Pb in zircon.
- The physical effects of CA are most visible when grains have suffered more Pb-loss.
- CA produces different ablation rates when compared to non-treated zircons, so ideally CA standards should be used.